CMSC202
Computer Science Il for Majors

Lecture 10 and 11 —
Inheritance

www.umbc.edu

Last Class We Covered

* Professor Chang substitute taught

 Allocation methods

— Static, automatic, dynamic
— new and delete

* Dynamically allocating arrays
— Constructors and destructors

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

* To review the exam results
* To understand the relationships between objects

* To begin learning about inheritance
—To cover what is being inherited

—To understand how inheritance and
access to member variables interact

www.umbc.edu

Exam 1 Results

www.umbc.edu

Code Reuse

www.umbc.edu

Code Reuse

* Important to successful coding

e Efficient

— No need to reinvent the wheel

* Error free
— Code has been previously used/tested
— (Not guaranteed, but more likely)

www.umbc.edu

Code Reuse Examples

 What are some ways we reuse code?
— functions

— classes

* Any specific examples?
— calling Insert() and a modified Delete() for Move()
— calling accessor functions inside a constructor

www.umbc.edu

Code Reuse Examples

 What are some ways we reuse code?
— Functions
—Classes
—Inheritance — what we’ll be covering today

* Any specific examples?

www.umbc.edu

Object Relationships

www.umbc.edu

Refresher on Objects

* Objects are what we call an instance of a class

* For example:
— Rectangle isaclass
— rlis avariable of type Rectangle
—rlis a Rectangle object

11

www.umbc.edu

Object Relationships

* There are two types of object relationships

° is-a

— inheritance

* has-a

— composition | both are forms
— aggregation of association

12

www.umbc.edu

Inheritance Relationship

A Car is-a Vehicle

 This is called inheritance
e The Car class inherits from the Vehicle class

* Vehicle is the general class, or the parent class

* Caris the specialized class, or child class, that
inherits from Vehicle

13

www.umbc.edu

Inheritance Relationship Code

class Vehicle {

public:
// functions

private:
int m_numAxles; all Vehicles have
int m numWheels; | axles, wheels, a
int m maxSpeed; max speed, and a
double m weight; weight

// etc

14

www.umbc.edu

Inheritance Relationship Code

class Car {

15

www.umbc.edu

Inheritance Relationship Code

class Car: public Vehicle {

%_I

Car inherits from
the Vehicle class

don’t forget the
colon here!

16

www.umbc.edu

Inheritance Relationship Code

class Car: public Vehicle {

public:
// functions

private:
int m numSeats; all Cars have a
double m MPG; number of seats, a
string m color; MPG value, a color,

string m fuelType; and a fuel type
// etc

17

www.umbc.edu

Inheritance Relationship Code

class Car:
public Vehicle { /*etc*/ };

class Plane:
public Vehicle { /*etc*/ };

class SpaceShuttle:

public Vehicle { /*etc*/ };
class BigRig:

public Vehicle { /*etc*/ };

18

www.umbc.edu

Composition Relationship

A Car has-a Chassis

* This is called composition
* The Car class contains an object of type Chassis

* A Chassis object is part of the Car class

* A Chassis cannot “live” out of context of a Car
— If the Car is destroyed, the Chassis is also destroyed

19

www.umbc.edu

Composition Relationship Code

class Chassis {

public:
// functions
private:

: :) all Chassis have a
string m material; , .

) - i material, a weight,
double m weight; and a maxLoad
double m maxLoad; they can hold
// etc

20 www.umbc.edu

Composition Relationship Code

class Chassis {
public:
// functions

private: also, notice
string m material; |[thatthereis
double m weight; no inheritance
double m maxLoad; for the Chassis
// etc class

21 www.umbc.edu

Composition Relationship Code

class Car: public Vehicle {
public:
// functions
private:
// member variables, etc.

// has-a (composition)
Chassis m;phassis;

22

www.umbc.edu

Aggregation Relationship

a Car has-a Driver

* this is called aggregation

23

www.umbc.edu

Aggregation Relationship

A Car has-a Driver

* This is called aggregation
* The Car class is linked to an object of type Driver

* Driver class is not directly related to the Car class
* A Driver can live out of context of a Car

* A Driver must be “contained” in the Car
object via a pointer to a Driver object

24

www.umbc.edu

Aggregation Relationship Code

class Driver: public Person ({

public: Y

Driver itself is a child

// functions
class of Person

private:
Date m licenseExpire;
string m licenseType;
// etc

25

www.umbc.edu

Aggregation Relationship Code

class Driver: public Person ({

public: Y

Driver itself is a child

// functions
class of Person

private:
Date m licenseExpire;

string m licenseType;

// etc ‘\ Driver inherits all of Person’s member

} o variables (Date m_age, string m_name,
4 . . .
etc.) so they aren’t included in the Driver
child class

26 www.umbc.edu

Aggregation Relationship Code

class Car: public Vehicle {
public:
// functions
private:
// member variables, etc.

// has-a (aggregation)
Person *m driver;

27

www.umbc.edu

Visualizing Object Relationships

* On paper, draw a representation of how the
following objects relate to each other

 Make sure the type of relationship is clear

e Car * Engine
* Vehicle * Driver

* BigRig * Person
e Rectangle * Owner
* SpaceShuttle * Chassis

28

www.umbc.edu

Inheritance

www.umbc.edu

Inheritance Access Specifiers

* inheritance can be done via public, private, or
protected

* we’re going to focus exclusively on public

* you can also have multiple inheritance

— where a child class has more than one parent

 we won’t be covering this

30 www.umbc.edu

31

Vehicle

Hierarchy Example

www.umbc.edu

Hierarchy Example

Vehicle
Car BigRig Plane || etc.

32

www.umbc.edu

Hierarchy Example

Vehicle
Car BigRig Plane || etc.

ILI—I—\

SUV Sedan Van Jeep

33

www.umbc.edu

Hierarchy Example

Vehicle
Hﬁ_\ S
Car BigRig Plane || etc. 7%
SUV Sedan Van Jeep \/

34

www.umbc.edu

Hierarchy Vocabulary

 more general class (e.g., Vehicle) can be called:
— parent class
— base class

— superclass

* more specialized class (e.g., Car) can be called:
— child class
— derived class
— subclass

35

www.umbc.edu

Hierarchy Details

* parent class contains all that is common among
its child classes (less specialized)

— Vehicle has a maximum speed, a weight, etc.
because all vehicles have these

* member variables and functions of the parent
class are inherited by all of its child classes

36

www.umbc.edu

Hierarchy Details

* child classes can use, extend, or replace the
parent class behaviors

37

www.umbc.edu

Hierarchy Details

* child classes can use, extend, or replace the
parent class behaviors

* uUsSe

— the child class takes advantage of the parent class
behaviors exactly as they are

* like the mutators and accessors from the parent class

38

www.umbc.edu

Hierarchy Details

* child classes can use, extend, or replace the
parent class behaviors

e extend

— the child class creates entirely new behaviors
* aRepaintCar () function for the Car child class

* mutators/accessors for new member variables

39

www.umbc.edu

Hierarchy Details

* child classes can use, extend, or replace the
parent class behaviors

* replace

— child class overrides parent class’s behaviors
* (we’ll cover this later today)

40

www.umbc.edu

Outline

 Code Reuse
* Object Relationships

* |Inheritance
— What is Inherited
— Handling Access

* Overriding

* Homework and Project

41

www.umbc.edu

What is Inherited

Vehicle Class

42

www.umbc.edu

What is Inherited

Vehicle Class

e public fxns&vars

43

www.umbc.edu

What is Inherited

Vehicle Class

e public fxns&vars
e protected fxns&vars

44

www.umbc.edu

What is Inherited

Vehicle Class

e public fxns&vars
e protected fxns&vars
e private variables

e private functions

45

www.umbc.edu

What is Inherited

AN HONORS UNIVERSITY IN MARYLAND

Vehicle Class

e public fxns&vars
e protected fxns&vars
e private variables

e private functions
* copy constructor
e assignment operator
e constructor
e destructor

46

www.umbc.edu

What is Inherited

Car Class Vehicle Class

e public fxns&vars
* protected fxns&vars
* private variables

* private functions
* copy constructor
* assignment operator
* constructor
* destructor

47

www.umbc.edu

What is Inherited

Car Class Vehicle Class

e public fxns&vars
* protected fxns&vars
* private variables

* private functions
* copy constructor
* assignment operator
* constructor
* destructor

e child class
members
(functions

& variables)

48

www.umbc.edu

What is Inherited

Car Class Vehicle Class

e public fxns&vars
* protected fxns&vars
* private variables

* private functions
* copy constructor
* assignment operator
* constructor
* destructor

e child class
members
(functions

& variables)

49

www.umbc.edu

What is Inherited

Car Class

Vehicle Class

* public
fxns&vars

e child class
members
(functions

& variables)

protected fxns&vars
private variables

private functions
copy constructor
assignment operator
constructor
destructor

50

www.umbc.edu

What is Inherited

Car Class Vehicle Class

* public
. fxns&vars
e child class , _
* protected * private variables
members - _
fxns&vars * private functions

(functions
& variables)

* copy constructor

e assignment operator
e constructor
e destructor

51

www.umbc.edu

What is Inherited

Car Class

Vehicle Class

* public
. fxns&vars
e child class
* protected
members
fxns&vars .

(functions
& variables)

* private
variables

private functions
copy constructor

assignment operator
constructor
destructor

52

www.umbc.edu

What is Inherited

Car Class

Vehicle Class

* public

. fxns&vars
e child class
* protected
members
, fxns&vars .
(functions
& variables))
* private .
variables .
\ /|
v)

private functions
copy constructor
assignment operator
constructor
destructor

53

www.umbc.edu

What is Inherited

Car Class Vehicle Class

* public
, fxns&vars
e child class
e protected
members fxns&vars : -
(functions e private functions
& variables) ' . copy constructor
* private * assignment operator
variables .
N ‘ constructor
A * destructor

not (directly) accessible
54 by Car objects

www.umbc.edu

What is Inherited

Car Class Vehicle Class

* public
: fxns&vars
e child class
e protected
members fxns&vars : -
(functions e private functions
& variables) ' . copy constructor
* private * assignment operator
variables .
N / constructor
A * destructor

not (directly) accessible
55 by Car objects

www.umbc.edu

What is Inherited

Car Class Vehicle Class

* public
: fxns&vars
e child class
e protected
members fxns&vars : -
(functions e private functions
& variables) ' . copy constructor
* private * assignment operator
variables .
N / constructor
A * destructor

not (directly) accessible can access and invoke, but
56 by Car objects are not directly inherited

www.umbc.edu

Outline

 Code Reuse
* Object Relationships

* |Inheritance
— What is Inherited
— Handling Access

* Overriding

* Homework and Project

57

www.umbc.edu

Handling Access

* Child class has access to parent class’s:
— public member variables/functions
— protected member variables/functions

— but not private member variables/functions

e How should we set the access modifier for
parent member variables we want the child
class to be able to access?

58

www.umbc.edu

Handling Access

* Do not make these variables protected!

— Leave them private!

* |nstead, child class uses public or protected
functions when interacting with parent
variables

— Reason we implement accessors and mutators

59 www.umbc.edu

Announcements

* Project 2 is out — you should have started!
— |t is due Thursday, March 10th

* Nothing over Spring Break
— Enjoy your temporary freedom!

60

www.umbc.edu

